Vol. 5, No. 1

1l

http:/ farwlac atic.mllfdacs/

Unclassifiied and Unlimited Distribution

http://iac.dtic.mil/dacs/

New XML Database
included!

ROI/SPI CD: SW Reliability Sourcebook CD:
* Technical Report & Spreadsheet Model * Covers the Entire Software Life Cycle
generalities and models the cost benefits * Sections & Appendices Adddress
achievable through Software Process - Software Reliability Overview
improvement - Definitions

- Relevant Statistical Concepts
* Return-On-Investment (ROI) Database - Software Metrics Overview

- Design Reliability & Development

- Allocation, Prediction & Estimation

- Software Reliability Analytical Techniques
- Software Reliability Testing

- Automated Software Reliability Tools

- Dictionaries, Glossaries

capturesthe benefits gained by software
organizations in improvements in cost,
schedule, reliability, employee morale,
and customer acceptance

+ Cost Benefit Analysis for - Bibligraphic Resources

Software Process Improvement (SPI) - Internet Resources

examines a cross-section of popular - Specifications, Standards & Handbooks
SPI methods and approaches, prioritized * Hundreds of Hotlinks & Embedded
by their costs and benefits Documents

The Data and Analysis Center for Software

http://iac.dtic.mil/dacs
1-800-214-7912 dacs@dtic.mil

2 SIN 5-1: Software Agents - Part 2

http://iac.dtic.mil/dacs/
mailto:dacs@dtic.mil

Strategies for Discovering Coordination Needs in Multi-Agent

Systems
Introduction

When multiple computational agents
share a task environment,
interactions between the agents
generally arise. An agent might
make a change to some feature of
the environment that in turn impacts
other agents, for example, or might
commandeer a nonsharable resource
that another agent desires. When the
decisions that an agent makes might
affect what other agents can or
should decide to do, agents will
typically be better off if they
coordinate their decisions.

Numerous techniques exist for
coordinating decisions about
potential interactions. These include
appealing to a higher authority agent
in an organizational structure,
instituting social laws that avoid
dangerous interactions, using
computational markets to converge
on allocations, explicitly modeling
teamwork concepts, using
contracting protocols to strike
bargains, and iteratively
exchanging tentative plans until

all constraints are satisfied. There

is arich literature on these and
other mechanisms for coordinating
agents; the interested reader can

see [5].

However, each of these
mechanisms takes as its starting
point that the agents requiring
coordination know, at the outset,
either with whom they should
coordinate, or what issues they
should coordinate about. As
examples, an organizational
structure inherently defines how
agents are related to each other,

by Edmnd H. Durfee,

and a computational market
corresponds to some resource or
“g0od” that was somehow known to
be contentious.

A central thrust of our research is in
pushing back the boundaries of what
is assumed known in a multiagent
setting in order to bootstrap the
coordination process. That is, we
want to develop techniques by which
agents can discover whom they
should coordinate with, or what they
should coordinate about, so that the
rich variety of coordination
techniques can then be employed.
This article briefly summarizes some
of our progress, results, and plans on
this front.

Unintended Conflicts

An important case in which agents
need to discover coordination needs
is the following. Agents occupy an
open, dynamic environment, and
each agent has its own independent

University of Michigan

objectives. Yet, in pursuing its
objective, an agent can
unintentionally interfere with others,
sometimes catastrophically.
Therefore, it is important for each
agent to discover whether something
it is doing needs to be coordinated
with others.

We have been studying coalition
operations as an example application
domain where this kind of problem
arises. In a coalition, objectives and
responsibilities are distributed
among multiple functional teams,
where operational choices by one
team can infrequently and
unintentionally affect another team.
The repercussions of unintended
interactions can range from merely
delaying the accomplishment of
objectives (such as waiting for assets
that were unexpectedly borrowed by
someone else) to more catastrophic
outcomes (such as so-called friendly
fire). We have been developing
computational techniques in which

Figure 1: Example Movement Task

Data & Analysis Center for Software (DACS)

Continued on page 4
3

Coordination Needs in Multi-Agent Systems

Continued from page 3

each team is
represented by a
computational
agent, and these
agents predict the
unintended
interactions and
resolve them
before they occur.
The resulting
coordinated plans [
ofthe agents
should be efficient
(e.g., agents
should not have to
wait unnecessarily
for others), flexible
(e.g., agents

B -

B

]
B>

should retain room
in their plans to
improvise around
changing local circumstances), and
realizable (e.g., agents should not
have to message each other at
runtime in a manner that outstrips
communication capabilities).

Conceptually, our techniques begin
by assuming that each agent can
represent its plans in a Hierarchical
Task Network (HTN), capturing the
possible decompositions of abstract
plan steps into more detailed plans.
As asimple example, consider the
case of agent A moving through a
grid world to reach a destination
(Figure 1). The HTN for this agent
isin Figure 2. At the most abstract
level (blue arrow in Figure 1, blue
node in the HTN), the plan is simply
to go from the initial location to the
destination. This is in turn composed
of'the three sequential steps of going
to the door, through the door, and
beyond the door (green, purple, and

4

Figure 2: Exanple Hierarchical Task Network (HIN)

aqua arrows/nodes respectively).
The ordering constraints are
captured in the HTN (Figure 2) by
the arrows labeled “B” for “before.”
For both the first and last step at this
level, there are two ways of
accomplishing the step. For example,
for getting to the door, the red route
or the orange route could be chosen.
Each of these in turn can be
decomposed into a sequence of two
movements; red, for example, is to
the right and then down.

An advantage of using the
hierarchical representation is that
each agent has, simultaneously, a
model of itself at multiple levels of
detail. In an open environment
populated by numerous agents,
being able to communicate about
and exchange abstract information
can enable agents to quickly
determine which (small) subset of

agents in the world they actually
could potentially interact with
(Figure 3ato Figure 3b). In the
simple movement task example, for
instance, the grid might be much
larger, and the subset of agents is
small whose planned movements,
even abstractly defined, indicate a
potential collision with agent A. For
those agents, it might even be
possible to impose constraints at the
abstract level to ensure against
unintended collisions, such as
putting the overall plans in
sequential order so that only one of
the affected agents moves at a time.
Or, for the remaining agents,
additional details of the HT'Ns can
be exchanged. As aresult, agents
that were potentially interacting
might be determined to not interact
at all, reducing the number of agents
further and introducing constraints

SIN 5-1: Software Agents - Part 2

Figure 3: Top-Down Coordination Protocol Example

Continued on page 6

5

Data & Analysis Center for Software (DACS)

Coordination Needs in Multi-Agent Systems

Continued from page 5

between only substeps of plans
leaving agents to do their other
substeps as they wish (Figure 3c).
Finally, further investigation might
indicate that the potential conflict
can be isolated to a particular choice
that an agent might make; a
commitment by the agent to forbid
that choice leaves the plans
coordinated without imposing any
ordering constraints between the
agents’ plans at all (Figure 3d).

This example illustrates that, by
working from the top down, agents
can more efficiently identify and
zoom in on the problematic
interactions. By digging down
deeply, they might be able to impose
commitments (on relative timing or
on choices of ways in which they
will accomplish their tasks) that lead
to very crisp coordination. However,
in dynamic environments, sometimes
it is better to impose constraints at
more abstract levels: while this
might require more sequential
operation than desired, it also allows
agents to avoid commitments to
details that they might regret. As is
intuitive in human coordination,
each agent retains more flexibility
for improvising when it makes more
vague commitments to others.
Moreover, digging down deeply
requires more rounds of
communication and analysis, so
coordinating at abstract levels incurs
less overhead. Among our ongoing
research activities are developing
methods for quantitatively
evaluating tradeoffs between
coordination “crispness”, overhead,
and flexibility.

We have developed techniques for
formulating summaries in HTN's that
permit the kind of top-down
reasoning that we have just
described, and have shown that such
techniques can indeed much more
efficiently coordinate agents [3].
These techniques have been shown
to be sound and complete. At the
cost of completeness, we have also
developed a version of these
techniques that can be used on-line
[4]. The on-line techniques allow
agents to postpone decisions about
which of the alternative ways they
will use to accomplish a task until
that task is the next to be done. This
in turn provides increased flexibility
to the agents, leading to more
reliable agent operation in dynamic
domains than methods that require
agents to make selections before
execution begins.

Dealing with
Centralization

The techniques just outlined have
the feature that, to ensure that all
possible interactions are detected and
dealt with, some agent or agents
need to compare all agents’ most
abstract plans. This implies that, at
some point, information about all
agents needs to be known in one
place, which is antithetical to
decentralized multiagent systems.
Certainly, our current
implementations rely on a central
coordinator to discover potential
agent interactions, although in
principle once these are discovered
the job of working with the agents to
resolve the interactions can be
delegated to multiple sub-agents,

where each handles a different
partition of the agent population.

How can we get around the need for
centralization? Well, first of all, it
should be noted that our use of
centralization for detecting
interactions does not imply that
authority, or even knowledge about
agent preferences, is centralized. In
our model, the coordination process
merely detects potential interactions
and finds possible resolutions (more
detailed resolutions as time goes on).
To agree upon which resolution to
use, the affected agents can employ
any of the various coordination
mechanisms mentioned at the
beginning of this article. That is,
these are appropriate once the agents
know about the interactions and who
isinvolved.

In turn, this suggests that one way of
eliminating the centralization of the
detection process requires that agents
are initialized with some knowledge.
For example, the organizational
structure in which they reside might
inherently partition the agents, such
that coordination can be carried out
in parallel in different partitions. Or
agents might be initialized with
knowledge of the possible actions of
other agents that can be used to
anticipate interactions. For example,
our research is using these ideas to
coordinate resource-limited agents in
amultiagent world. In the simplest
sense, a resource-limited agent needs
to decide how to allocate its limited
capabilities in order to meet its
performance goals across the scope
of worlds that it might encounter. By
employing knowledge about what
actions other agents might take in

SIN 5-1: Software Agents - Part 2

particular situations, it can better
predict what worlds it might
encounter, and can even use its
uncertainty to focus communication
with those other agents to ask them
which of the alternative actions they
plan to take for a critical situation.
Such communications could also
permit agents to avoid taking
redundant actions in situations where
they would react the same way. In
the long run, agents can even engage
in negotiation to convince others to
favorably change how they react to
particular circumstances.

Congregating over
Mutual Concerns

An alternative means of determining
coordination needs, instead of
centralizing information or
inherently distributing key
coordination knowledge, is to
instead permit coordination needs to
be discovered through interactions.
While this would be inappropriate in
applications where uncoordinated
interactions could be catastrophic
(such as when friendly fire arises in
coalition operations), there are many
applications where the consequences
of poor coordination are not so dire.

Consider, for example, interactions
among groups of people with similar
interests, such as in an electronic
newsgroup. A well-defined group
permits an efficient exchange of
relevant information among
interested people, with a minimum
of tangential communications that
waste readers’ time. A poorly-
defined group, on the other hand,
wastes the reader’s time and might

lose readership quickly, but with no
significant lasting effects on the
participants. In this case, then, it is
possible that people might
congregate around newsgroup topics
in an emergent way, through
experimentation and exploration in
the space, until they converge on
relatively stable newsgroups that
lead to productive interactions.

We have been conducting research in
understanding the dynamic processes
of congregating in open
environments [1]. In our model,
agents move among congregations
until they find places where they are
satisfied, where satisfaction depends
on the other members of their
congregation. Since these other
agents are also moving around to
find satisfactory congregations,
agents are engaged in non-stationary
(“moving target”) search. In general,
convergence in such systems is slow
if it happens at all, and we have been
studying mechanisms that enhance
convergence such as: varying the
movement costs of agents so that
some “hold still” while others move;
allowing like-minded agents to move
as a coalition; giving agents the
ability to remember and return to
previously-experienced
congregations; and allowing agents
in a congregation to summarize their
common interests and advertise this
information to other agents.

As a specific form of congregating,
we have been particularly interested
in information economies, where
competing producers of information
goods must bundle and price their
goods so as to attract (a subset of)

Data & Analysis Center for Software (DACS)

the information consumers. Where a
producer ends up in the product-and-
price space is influenced not only by
the consumer preferences, but also
by the positioning decisions of other
producers. Among our research
results are that we have defined
some of the conditions that promote
the discovery of niche markets in the
information economy, such that
producers engage in stable
relationships with an interested
subset of the consumer population,
and avoid mutually-harmful
interactions (price wars) with other
producers [2]. As suggested above,
the price paid for this decentralized
technique for discovering which
agents should coordinate (interact)
with each other is that, on the way to
the ultimate mutually profitable
result, producers will sometimes
compete with each other and do
poorly temporarily as a result.

Summary and Future
Directions

In this article, we have claimed that,
while powerful techniques exist for
coordinating agents that already
know whom or about what to
coordinate, there are still many
issues that need to be explored in
designing efficient mechanisms by
which to determine what needs to be
coordinated in the first place. We
briefly described some mechanisms
that we are exploring for this
purpose. One of these involves
agents iteratively exchanging plan
information at increasingly detailed
levels to isolate potential interactions

Continued on page 8
7

Coordination Needs in Multi-Agent Systems

Continued from page 7

and impose effective commitments to
resolve conflicts. Another, on the
other hand, permits suboptimal
interactions to occur, and allows the
agent population to self-organize,
over time, into congregations that
emphasize beneficial interactions.

There are many directions in which
we are, or are considering, extending
these research activities. We need to
develop heuristic means by which
agents can decide on the level of
detail at which they should
coordinate, and metrics for
comparing alternative coordination
decisions in uncertain environments.
We need to extend the soundness and
completeness proofs, as well as the
complexity analyses, of the
techniques as we continue to
augment and improve them.
Coordination commitments that are
derived between agents should be
generalized and remembered to form
the core of a suite of team plans, and
the processes by which coordination
needs are discovered should apply
not only between agents but also
between agent teams. Finally, these

techniques need to be implemented
and evaluated in the context of
challenging applications, such as in
the domain of coordinating coalition
operations.

Acknowledgements

The ideas and results described in
this article were developed with
numerous collaborators. In
particular, I’d like to thank my
students, including Brad Clement,
Pradeep Pappachan, Chris Brooks,
Haksun Li, and Jeff Cox. The work
was supported, in part, by DARPA
under the Control of Agent-Based
Systems Initiative (F30602-98-
20142), by DARPA under the
Automated Negotiating Teams
Initiative (subcontract to Honeywell
on F30602-00-C-0017), and by NSF
grant [IS-9872057.

About the Author

Dr. Edmund H. Durfee is currently
a Professor of Electrical Engineering
and Computer Science, and of
Information, at the University of
Michigan. He received a Ph.D.

degree in Computer Science from
the University of Massachusetts in
1987 and joined the EECS
Department at the University of
Michigan in 1988. His area of
teaching and research is artificial
intelligence, multi-agent systems,
and real-time intelligent control. To
date he has published over 100
journal and conference papers, and
has served in various capacities such
as the program chair (1998) and
conference chair (2000) for the
International Conference on
MultiAgent Systems. He has
received a Presidential Young
Investigator Award from the NSF
(1991), is a senior member of IEEE,
and has been elected as a Fellow of
the American Association of
Artificial Intelligence (AAAI).

Contact Information

Dr. Edmund H. Durfee
EECS Department
University of Michigan
Ann Arbor, M1 48109

durfee@umich.edu

References

[1] Christopher H. Brooks, Edmund H. Durfee and Aaron Armstrong. “An Introduction to Congregating in MultiagentSystems”,
Proceedings of the Fourth International Conference on MultiAgent Systems (ICMAS-2000), pages 79-86, July 2000.

[2] Christopher H. Brooks, Edmund H. Durfee and Rajarshi Das. “Price Wars and Niche Discovery in an Information Economy”,
Proceedings of the ACM Conference on Electronic Commerce 2000 , October 2000.

[3] Bradley J. Clement and Edmund H. Durfee. “Theory for Coordinating Concurrent Hierarchical Planning Agents Using Summary
Information.”, Proceedings of the National Conference on Artificial Intelligence (AAAI-99), pages 495-502, July 1999.

[4] Pradeep M. Pappachan and Edmund H. Durfee. “A satisficing multiagent plan coordination algorithm for dynamic domains”,
Proceedings of the ACM Conference on Autonomous Agents (Agents-Ol), June 2001.

[5] Gerhard Weiss (editor). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press: Cambridge

Massachusetts, 1999.

SIN 5-1: Software Agents - Part 2

mailto: durfee@umich.edu

Semantic Intercperability Among Agents

Introduction

Although there are many definitions
of “agent,” one of the most
interesting is “self describing
program.” If a web-based program
provides a detailed description of
flow to interact with it, then it is an
agent, and other programs can use
the information it provides to decide
at run time how to interact with it.
Extensions of existing planning
algorithms can be used to construct
sequences of actions, or more
elaborate action structures, for
accomplishing goals by sending
requests to an agent. One obstacle to
this happy scenario is that not all
agents will describe themselves, or
their ideal partners in the same
notation, or, using the fashionable
word, using the same ontology. In
that case, the agents can’t be coupled
unless an ontology translation can be
found. Taking a logical point of
view, the problem can be thought of
as managing a merged ontology
containing bridging axioms that
relate the terms of one ontology to
the terms of the other, not necessarily
one-to-one.

Although many people are excited
about “agent technology,” few
people agree about what agent
technology actually might be, or
even what the word “agent” might
mean. In this article, I mean
something very specific: an agent is
a computer program accompanied
by a description of what it does and
how to use it. The description is
detailed and perspicuous enough that

by Drew McDermott, Yale University

another program can interact with
the agent without having to be
explicitly programmed to do so. In
other words, an agent is a
self-describing program. For
example, a Wabash.com' of the
future might provide enough
information that an automated
shopping program could conduct a
transaction with it by deducing from
scratch how one asks Wabash.com
for information, how one tells it
what one wants, how one tells it the
appropriate billing information, and
so forth. The shopping program
might itself be an agent, of course,
and to avoid seeming to make
irrelevant distinctions [will use the

WSDL and SOAP [2, 1] use XML
[4] as their basic syntactic vehicle.
They tend to focus on representing
attributes of web agents such as
where they are located, what
protocols they use to communicate,
and such.

In this article I will argue that one
can aim higher. Rather than
represent service descriptions with
simple attribute-value tables, we
should be able to say things like: “To
put an item in the shopping cart,
send a message of type
Put-in-shopping-cart and parts
Product-id and Quantity.” One way
to formalize this statement is with a
notation like this:

(: action (put-in-shogping-cart id - Product-id quantity - Trteger)
:ef fect (quart-in-cart id quantity))

word “agent” as though all programs
were self-describing unless proven
otherwise.

The need for this kind of self
description is evident to many
people. For example, companies
active on the Internet are interested
in supporting automated
business-to-business transactions by
making their websites
self-describing. This interest has led
to the creation of the UDDI
(Universal Description, Discovery,
and Integration) consortium that is
developing notations for Website
self-description (see www.uddi.or).
UDDI, and related notations such as

which is derived from PDDL
(Planning Domain Definition
Language) [6], a notation for
defining all the legal actionsina
domain and what their effects are.

The use of such notations does not
mean we are giving up on XML,
which has earned wide popularity as
amessage-exchange medium on the
Internet. But XML is defined to be
“machine-readable and
human-tolerable.” That is, it isn’t
completely opaque to people, but it
isn’t supposed to be easy for them to
produce. One way to encode the
definition above in XML is this:

Continued on page 10

LA little known competitor to a large on-line bookseller named after a river.

Data & Analysis Center for Software (DACS)

Semantic Intercperability Among Agents

Continued from page 9

<Action>

<params>
<df: Seq>
<cf: 1i>

<Var:

</Var>
</ 11>
<df: 11>

</Var>
</ 11>
</rdf: Seq>
</params>
<ef fect>
<Predication>

</Predication>
</ef fect>
</Action>

<name resource=" ecan: put-in-shopping-cart “ />

1" name="1d" >

<type resource="ecom: Product-id” />

<VarID= “ v2 “ name= “quant “ >
<type resource="ecom: Integer” />

<Subj resource="#v1"/>
<Pred re sourc e= “ e com: quant - in- cart “ />
<Obj resource="#v2"/>

This is actually in RDF [5], a set of
conventions for using XML syntax
to describe arbitrary objects.
Although it is possible to understand
it, and even type it, there is no real
reason for people to ever touch RDF
or XML. Computers like these
notations because they
unambiguously specify the syntactic
hierarchy of an expression, even for
programs that know little about the
content. People tend to prefer
conciseness and layout in order to
grasp the structure and meaning of

10

an expression. For the rest of this
paper, I’ll use logic-based notations
with Lisp syntax, but rest assured
that when it comes time for agents to
exchange information, they will
probably do it with notations

containing a lot more angle brackets.

There are several different phases
involved in having two agents hook
up. The first is the advertising/
search phase. It is based on the
assumption that agents with
something to sell will post
descriptions of their abilities in

central registries, where agents
trying to solve a problem can find
them. This is also sometimes called
the brokering phase, based on the
plausible assumption that the
registry plays an active role in
coupling the two agents together.

Our focus is on what happens after
the brokering phase. One can
generally assume that the agent
descriptions used for advertising and
search are fairly “shallow.” The
descriptions of what agent 1 wants
and what agent 2 has are in some
broad vocabulary that enables one to
distinguish book sellers from
bookies. Once the decision has been
made to couple two agents together,
amore detailed description comes
into play. It’s at this point that action
definitions like that for
put-in-shopping-cart are made
available. If a merchant has provided
definitions for all the possible
actions a customer can take, then the
customer is faced with a problem of
the following form:

Given the current situation,
and definitions of the
possible actions in every
situation, find a sequence of
actions that will achieve a
given goal.

This is in essence what is called in
Al a planning problem. 1 will use
the phrase planning phase for the
process of solving this problem, that
is, finding an action sequence. After
the planning phase comes the
execution phase, when the sequence
of actions is actually carried out. It is
reasonable (we hope) to assume that
the planning agent will succeed if it

SIN 5-1: Software Agents - Part 2

executes the plan; but there may well
be situations where the plan exits
prematurely with some sort of
failure indication. In that case the
agent may give up, or replan,
starting from the situation it finds
itself in halfway through the original
plan.

As an example of a planning
problem, suppose the buying agent
wants to own a copy of Ubik by
Philip K. Dick, but spend less than
twelve dollars. Through a broker, it
finds a merchant, Wabash.com, that
seems to be in the right business. It
asks Wabash.com for its description,
computes for a while, and then
generates the following plan:

This plan is much simplified, but
exhibits certain key features:

1.

Steps can be tagged with arbitrary
symbolic names, which enables
the agent to refer to the step-value
of previous steps.

The step-value of a receive step
is the message received. The
step-value of a send step is a
little less intuitive: it’s a
“message id” that allows the
sending agent to match up
replies with sends. That is, in
(receive u’ 1), the argument i
should be the message id of the
send the received message is in
response to.

The plan is not guaranteed to
succeed. The verify steps check
to see if assumptions are
fulfilled; if not, the plan fails.
The planning agent will have to
replan, or perhaps find another
merchant agent to deal with.

(erify (exdsts (pid - Product-id)
(= (step-value 2)
(in-stodk-reply yes pid))))

(send Wabash. con

1))
(tag s4 (send Wabash. cam

(
(

(series (tag sl (serd Wabash. con
(uery-in-stock ((author “Philip K. Dick”)
(dtle “Waik’)))))
(tag 2 (receive Wabash.com (step-value <l)))

(put-in-shopping-cart (! pid (step-value 2)

(payment -method (credit-card “9876 6802 2963 3715")))
(tag 5 (receive Wabash. cam (step-value s4)))
(verify (= (step-value s5) (payment-method-status authorized)))
tag s6 (send Wabash.com (confirm-purchase)))
tag s7 (receive Wabash.ocom (step-value s6)))
(verify (= (step-value s7) (purchase-status anfimmed))))

Data & Analysis Center for Software (DACS)

A more realistic planner could
produce a branching plan, with
alternative continuations after a
run-time test. For instance, the plan
might say to try the usual credit
card, and if it is refused, try sending
a backup credit-card number.

This is arich area for research, but |
want to focus on a different set of
issues, concerned with how agents
cope with differences in vocabulary
and terms constructed from it. There
is no guarantee that when two agents
encounter each other they will talk
about the same thing using exactly
the same terms. It’s not that easy to
create notations for agent
descriptions, and the more diverse
the population of agents to be
described gets, the harder it gets to
find a notation that everyone
involved can agree on. If
self-describing agents become a
reality at all, it is likely that
notations will be centered around
particular industries or other types of
institutions (military, educational,
and such). Within a community that
shares a notation, communication
will be fairly straightforward.
Between communities, it will be
considerably more difficult.

The word “ontology” is in fashion
for talking about vocabularies and
notations. Philosophers use the word,
as a singular noun only, to mean the
philosophy of being; in the
representation business, we often
contemplate multiple competing
“ontologies.” That’s because the
word has come to mean “How
objects in a domain are named,

Continued on page 12
11

Semantic Intercperability Among Agents

Continued from page 11

classified, and dissected.” The link
to the philosophy of being is the idea
that “to be is to have a name,” so
that what you don’t give a name to
might as well not exist. For example,
in the bookselling business you
distinguish between the paperback
and hardcover versions of a book,
but you don’t distinguish between
the 7th and 8th printing of the
hardcover edition. If someone wants
to program their agent to buy a book
from the 7th printing, he is out of
luck. Wabash.com’s agent will never
know what he is talking about.
Printings may as well not exist as far
asitis concerned.

There are other cases where agents
from overlapping domains do talk
about the same things, but in
different ways. Here they do have a
chance to communicate, provided a
way can be found to translate
between ontologies. This is a very
difficult problem, much harder, for
instance, than the planning problem
we sketched above, which is hard
enough. The reason it is so difficult
is that it often requires subtle
judgments about the relationships
between the meanings of formulas in
one notation and the meanings of
formulas in another. Furthermore,
there is no obvious “oracle” that will
make these judgments. We cannot
assume that there is an overarching
(possibly “global’) ontology that
serves as a court of appeals for
semantic judgments. There are times
when such a strategy will work, but
only after someone has provided a
translation from each of the

disparate ontologies to the
overarching framework, and there is
no reason to expect either of these
translation tasks to be any easier
than the one we started with. Indeed,
the more the overarching framework
encompasses, the harder it will be to
relate local ontologies to it. I fence
the work of ontology reconciliation
inevitably involves a human being to
do the heavy lifting. The most we
can hope for is to provide a formal
definition of the problem, and
software tools? to aid in solving it.

The problem of ontology translation
is complicated by the fact that
different ontologies are expressed in
radically different notations, from
relational databases to semantic
networks. This diversity makes it
seem as if a key part of the problem
is expressing mappings between
arbitrary data structures. Our
research group is going in a different
direction. We don’t assume that
“mapping” something to something
else is the crux of the matter, but
instead that the problem is to infer
content expressible in one

from other ontologies is in its
vocabulary. For the rest of this paper,
I will assume that all facts are
expressed in terms of formal
theories, each of which contains the
following elements:

1. A setof types.

2. A set of symbols, each with a
type.

3. A set of axioms involving the
symbols.

Once we have cleared away the
syntactic underbrush, the
ontology-transformation problem
becomes much clearer. Suppose one
bookseller has a theory O, witha
predicate (in-stodk x - Bock t -
Duration), meaning that x is in stock
and may be shipped in time t.
Another bookseller expresses the
same information in its theory 0,
with two predicates, (in-stak y -
Book) and (celiverable d -
Duration y - Book). We are
presented with a dataset D, that is in
terms of O,, which contains
fragments such as

ontology from content
expressed in the other.

We start with the postulate
that the different syntactic
forms used by different

(:constants Uoik Ulysses - Book)
(:axdare (in-stock ok (* 4 day))

(in-stock Ulysses (* 24 haar))
..)

ontologies can be factored
out, allowing the problem
to be phrased at the content level
only. What this assumption comes
down to is the idea that everything
expressed in an ontology can be
expressed in a neutral logical syntax,
so that the only way it can differ

2Such as those described by [9].
12

To translate this into an equivalent
dataset that uses (,, we must at least
find a translation for the axioms. The
types and constants need to be
handled as well, but we’ll ignore
that.

SIN 5-1: Software Agents - Part 2

With this narrow focus, it becomes
almost obvious how to proceed:
Treat the problem as a deduction
from the terms of one theory to the
terms of the other. That is, combine
the two theories by “brute force,”
tagging every symbol with a
subscript indicating which theory it
comes from. Then all we need to do
is supply a “bridging axiom” such as

(fxall bt) Gff ({instok] bt)
(ard (in-stock2 b)
(Geliverables t b))))

which we can use to translate every
axiomin D, or any other dataset.
More precisely, we can use it to
augment the contents of D,. Any
time we need an instance of
(in-stock, x) and (celiverables y x),
the bridging axiom will tell us that
(in-stock, Woik) and (celiverable
(* 24 hr) Woik) are true (and maybe
other propositions as well). (the
lifting axioms of [3].)

It seems as if we have lost sight of
our original goal. We were looking
for an approach to transforming
ontologies, and we seem to have
found a way of merging ontologies.
Actually, that is not such a bad place
to be. It suggests that the case of two
ontologies is not special; we might
well want to merge three or more.
There are efficiency issues, but they
are not that different from those that
arise in importing modules from
programming-language libraries.

Still, one is likely to feel that
problems like the one just given are
much too easy. In realistic cases, two
ontologies will “carve the world up
differently.” They may have different
“granularity,” meaning that one
makes finer distinctions than the
other; of course, 0, might make finer
distinctions than 0, in one respect,
coarser distinctions in another.
Here’s an example: suppose 0, is the
ontology we have been drawing
examples from, a standard for the
mainstream book industry. Now
suppose 0, is an ontology used by
the rare book industry. The main
difference is that the rare-book
people deal in individual books,
each with its own provenance and
special features (e.g., an autograph
by the author). Hence the word
“book” means different things to
these two groups. For the
mainstream group, a book is an
abstract object, of which there are
assumed to be many copies. Ifa
customer buys a book, it is assumed
that he or she doesn’t care which
copy is sent, provided it’s in good
condition. For the rare-book
industry, a book is a particular
object. It may be an “instance” of an
abstract book, but thisisnota
defining fact about it.

For example, if you buy Walt
Whitman’s Leaves of Grass from
Wabash.com, you can probably
choose from different publishers,
different durabilities (hardcover vs.
paperback, page weight), different
prices, and various other features

(scholarly annotations, large print,
spiral binding, etc.). However, you
certainly can’t choose exactly which
copy you will receive of the book
you ordered; and you probably can’t
choose which poems are included,
even though Whitman revised the
book throughout his life. The
versions in print today include the
last version of each poem included in
any edition.

If you buy the book from
RareBooks.com, then there is no
such thing as an abstract book of
which you wish to purchase a copy.
Instead, every concrete instance of
Leaves of Grass must be judged on
its own merits. Indeed, making this
purchase is hardly a job for an
automated agent, although it could
be useful to set up an agent to tell
you when a possibly interesting copy
comes into the shop.

Let’s look at all this more formally.
Suppose that the planning agent uses
the industry-standard ontology (0,),
and the broker puts it in touch with
RareBooks.com, with a note that
although it bills itself as selling
books, its service description uses a
different ontology (0,). If after trying
more accessible sources the planning
agent’s goal can’t be achieved, then
the broker may search for an existing
ontology transformation, or merge,
that can be used to translate
RareBooks’s service description
from 0,t0 0,

Continued on page 14

3If it can’t find one, all it can do is notify the maintainers of the ontologies of the problem; there is no way for the broker, the planning
agent, or the end user to find a transformation on the fly.

Data & Analysis Center for Software (DACS)

13

Semantic Intercperability Among Agents

Continued from page 13

Let us sketch what some of the
bridging axioms between 0, and
0,might look like. In particular, we
need to infer instances of (is Book,
x) given various objects of type
Book, with various properties.
Objects of type Book, we will call
commodity books, an example is the
Pocket Books edition of Mein
Kampf Objects of type Book, we
will call collectable books, an
example is a copy of Mein Kampf
once owned by Josef Stalin. It is
roughly true that many, but not all,
rare books can be thought of as
instances of particular commodity
books. Two rare books are instances
of the same commodity book if they
have the same publisher, the same
title, the “same” contents, and the
same characteristics (e.g., hardcover,
large print, and such).* We can
produce the following bridge
axioms:

This should all be self-explanatory,
except for the predicate revision-dif,
which we suppose is in use in the
rare book business to express how
many revisions are found between an
earlier and later copy of an author’s
work. We have introduced a new
function book-type, which maps
individual collectable books to their
types, which are commodity books.

For axioms such as these to do the
planning agent any good, it must be
possible for the planning agent to use
them to translate a rare-book
dealer’s service description. Suppose
the agent is trying to buy a copy of
Lady Chatterly’s Other Lover, alittle
known sequel to D.H. Lawrence’s
famous work®. Having exhausted the
usual sources, it attempts to deal
with RareBooks.com. It must find a
plan in the merged ontology, then
execute it.

ff @d &

—
1l

(= (oock-type b12)
(faall (2 - Bodk?)
(= (b2 I2)

(: functians (bodk-type x - Bodk2) - Bokl)
(:axdars (farall (12 k22 - Bodk2)

(piblishers bl2)

(publishers 122))

(Htleshl2) (dtlesk2))
(phys-charac2 bl2)
(Phys-charac2 ©b22))

& (revisin-dif2 bl2 22) 1-5))

(ouyl (bock-type b2))))

(ook-type b22))))

Here are the main points [have tried
to make:

1. Interagent communication
requires a sophisticated level of
representation of knowledge
states, action definitions, and
plans.

2. This representation can only be
logic-based; no other notation
has the expressive power.
Embedding this logic in some
form of XML/RDF/DAML
notation is a good idea for web-
based agents, but puts nontrivial
demands on the representational
power of those notations.

3. Inspite of the expressivity, there
are algorithms for manipulating
logic-based expressions that
might overcome computational
complexity problems.

4. Inparticular, planning
algorithms are a natural fit to
the idea of a service descrip-
tion. The service description
specifies the possible inter-
actions with an agent; a plan is
a sequence of interactions to
achieve a specific goal. Finding
such plans is more or less what
planning algorithms do.

5. One of the worst obstacles to
allowing agents to use each
others’ descriptions to
communicate is that they might
speak different languages, or, in
the current jargon, “use different
ontologies.”

‘Comparing the ISBNs of the two books would go a long way toward deciding if they are the same, but the ISBN system has been in
effect for only thirty years, so it won’t apply to many rare books.

Sin fact, fictitious.

14

SIN 5-1: Software Agents - Part 2

6. Solving this problem at the
logical level allows us to focus
on the problem of supplying
bridging axioms between the
two vocabularies. These must
be supplied by people, although
automated tools can play a
significant role in tracking bugs,
version control, and such.

One might make the objection that
real life cannot be so tidily reduced
to predicate calculus. Real
ontologies contain many hidden
presuppositions, which are lost when
they are boiled down to dry axioms.
This is a serious objection, but we
hope it is less likely to hold true in a
domain like ours, where everything
has got to be pretty formal for agent
communication to be possible at all.

This is obviously work in progress.
We are in the process of adapting our
Unpop planner [7] to handle
hierarchical and contingency
planning. We are beginning work on
an implementation of the ontology
merger.

About the Author

Dr. Drew McDermott is a
Professor of Computer Science at
Yale University. He received a Ph.D.
in 1976 from Massachusetts Institute
of Technology. He is the coauthor of
two textbooks in artificial
intelligence, and has a new book
coming out from MIT Press on
machine consciousness. He is on the
editorial board of Artificial

Intelligence, and is a Fellow of the
American Association for Artificial
Intelligence. His research is in robot
navigation, planning, and interagent
communication.

Contact Information

Dr. Drew McDermott
Yale University
Dept. of Computer Science
51 Prospect Street
New Haven Ct. 06511

203-432-1284
drew.mcdermott@yale.edu
http://www.cs.yale.edu/homes/dvm/

References

[1] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Simple Object Access
Protocol (Soap) 1.1. Technical Report, W3C, 2000. Available at http://www.w3.org/TR/SOAP.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Definition Language (WSDL) 1.1. Technical report,
W3C, 2001. Available at http://www.w3c.org/TR/wsdl.

[3] G. Frank, A. Farquhar, and R. Fikes. Building a Large Knowledge Base from a Structured Source. /EEE Intelligent Systems, 14(1),

1999.

[4] E. R. Harold and W. S. Means. XML in a Nutshell: A Desktop Quick Reference. O’Reilly & Associates, 2001.

[5] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and Syntax Specification. Technical Report, W3C,
1999. Available at http: //www.w3c.org/TR/REC-rdf -syntax.

[6] D. McDermott. The Planning Domain Definition Language Manual. Technical Report 1165, Yale Computer Science, 1998. (CVC

Report 98-003).

[7] D. McDermott. Using Regression-match Graphs to Control Search in Planning. Artificial Intelligence, 109(1-2):111-159, 1999.
[8] D. McDermott, M. Burstein, and D. Smith. Overcoming Ontology Mismatches in Transactions with Self-Describing Agents. In

Proceedings of Semantic Web Working Symposium, pages 285-302, 2001.

[9] P. Mitra, G. Wiederhold, and M. Kersten. A Graph-Oriented Model for Articulation of Ontology Interdependencies. In Proceedings
of Conference on Extending Database Technology (EDBT 2000), 2000.

Data & Analysis Center for Software (DACS) 15

http://www.cs.yale.edu/homes/dvm/

Armmy Intelligent Agents for Software Engineering
by C. Ronald Green, U.S. Army Space and Strategic Defense Command

Introduction

Computer technologies are the force
multiplier for the Army After Next
warfighter. The U.S. Army Space
and Strategic Defense Command is
developing advanced computer
hardware and software technologies
to provide the 21* century
warfighter with information
superiority. Much of this work is
being done by the Missile Defense
and Space Technology Center’s
Advanced Technology Directorate in
Huntsville, Alabama.

The use of state-of-the-art advanced
interface effectors with total
spectrum information presentation,
autonomous intelligent agents, and
self-learning decision aids combined
with distributed heterogeneous high-
speed processors provide the
capability to collect, process, and
disseminate a fault tolerant flow of
information and knowledge while
exploiting or denying an adversary’s
ability to do the same.

Available Advanced
Intelligent Agents

Advanced Intelligent Agents
currently available as a result of this
research include the: Decision
Support Tool, Reuse Decision
Maker’s Toolset, and Verification,
Validation and Accreditation
Computer-Based Training
Courseware.

16

Decision Support Tool

The Decision Support Tool (DST) is
a PC-based support tool that enables
users to improve decision making,
record decision rationale, integrate
mechanisms, and capture historical
data. The current version of the
DST has been applied to the mission
application segmentation processes
of'the Defense Information
Infrastructure (DII) Common
Operating Environment (COE).
These processes aid in identifying
and developing COE components,
and developing COE-based
applications. The DST provides the
user with a complete description of
activities associated with developing
a COE software segment through the
use of automated tools which reduce
user generated input errors. The
DST also provides insight into the
DII compliance requirements by
allowing the user to perform a pre-
compliance application test that
helps to determine potential cost and
schedule impacts.

Reuse Decision-Maker'’s
Toolset

The Reuse Decision-Maker’s
Toolset (RDT) is a PC-based
software tool that automates the
Software Reuse Business Model.
The RDT provides guidance to
program planners and decision
makers on performing reuse-based
software acquisition. The tool
employs a graphical user interface,
relational database, and extensive
support and help features. The RDT
provides program and domain

management personnel a detailed
process to develop and implement
reuse activities throughout the
system acquisition life cycle. The
tool addresses three perspectives
which identify key activities that
must be performed and provides
mechanisms allowing the capturing
of’key information regarding
decisions made throughout the
acquisition process:

® User Perspective - Activities
include identifying mission need
and assessing reuse activities.

® Domain Perspective - Activities
include developing domain
infrastructure, developing high-
level acquisition strategy, and
implementing and maintaining
the domain.

® Program Perspective - Activities
include identifying
requirements, developing, and
refining business plan,
performing contracting,
managing system development,
and deploying and maintaining
system.

Verification, Validatim,
and Accreditation (VV&A)
Computer-Based Training
(CBT) Courseware

The Verification, Validation &
Accreditation Computer-Based
Training courseware provides broad
spectrum VV &A training for the
modeling and simulation community
with special emphasis on Distributed
Interactive Simulations. The
courseware is intended to promote
uniform application of VV&A

SIN 5-1: Software Agents - Part 2

processes Army and DoD-wide. The
VV&A CBT course materials are
layered into four levels to meet a
broad cross-section of skills,
backgrounds, and interests:

® Level 1 includesthe
introduction, main menus, and
instructions on how to use the
training package.

® [evel 2 contains tutorials on
VV&A methodology and
application, and is targeted at
managers, decision makers,
planners, and practitioners.
Specifically, this level contains
a VV&A overview and tutorials
on VV&A of DIS, VV&A
application tailoring, and
requirements for Subject Mater
Experts (SME).

® [evel 3 provides “howto”
instructions for VV&A
practitioners. It may also be
used by managers or planners
who need additional material on
a specific subject. It includes
detailed training modules which
address planning, tailoring, and
costing VV&A, personnel
issues, documentation
requirements, configuration
management, and acceptability
measures.

® [evel 4 provides references to
assist users in finding and
accessing additional material
related to M&S, DIS, and
VV&A.

About the Author

Dr. C. Ronald Green is the chief of
the computer technologies division
within the U.S. Army Space and
Missile Defense Command in
Huntsville. During his career, Green
served as a design engineer with
Boeing and Sperry Rand where he
worked on control systems for the
Saturn V and the B-52.

Dr. Green earned his bachelor’s
degree in electrical engineering from
University of Alabama and both a
master’s degree in administrative
science and a doctorate in computer
science from the University of
Alabama at Huntsville. Dr. Green is
the point of contact for software
issues and for transitioning emerging
computer technologies within the
U.S. Army Space and Strategic
Defense Command.

Contact Information

Dr. C. Ronald Green
U.S. Army Space and Strategic
Defense Command
CSSD-TC-AS
PO Box 1500
Huntsville, AL 35807-380

205-955-3498

Data & Analysis Center for Software (DACS)

AV A7

7
/4

‘/;{‘/‘ ‘o/*}‘/’ A
g4 u.//.- A0z
7
.

e e

' 7
/ //7/ ‘n//{'/{‘:(,?/?

_

..rﬁ{/,"ﬁa'uul:‘//; 704

24,

%%

475

17

http://www.dacs.dtic.mil/forms/regform.shtml
news-editor@dacs.dtic.mil

STN Val. 5, No. 1
In This Issue

Strategies for
Discovering
Coordination Needs
in Multi-2gent

SYSLEemMS .ecevivieininnnnnnn.. 3

Semantic

Interoperability
Among Agents

Army Intelligent
Agents for Software
Engineering

Advertisement

The DoD Software Tech News is
now accepting advertisements for
future newsletters. In addition to
being seen by the thousands of
people who subscribe to the DoD
Software Tech News in paper copy
the advertisement will also be placed
on the Data & Analysis Center for
Software’s website
(http://iac.dtic.mil/dacs/) exposing
your product, organization, or
service to hundreds of thousands of
additional eyes.

Interested in learning more? For
rates, layout information, and
requirements contact:

Dave Nicholls

DACS Deputy Director

Data & Analysis Center for Software
P.O. Box 1400

Rome, NY 13442-1400

Phone: 800-214-7921
Fax: 315-334-4964
E-mail: dnicholls@dacs.dtic.mil

Article Reproduction

Images and information presented in
these articles may be reproduced as
long as the following message is
noted:

“This article was originally printed
in the DoD Software Tech News,
Vol. 5, No. 1. Requests for copies
of'the referenced newsletter may be
submitted to the following address:

Lon R. Dean, Editor

Data & Analysis Center for Software
P.O. Box 1400

Rome, NY 13442-1400

Phone: 800-214-7921
Fax: 315-334-4964
E-mail: news-editor(@dacs.dtic.mil

An archive of past newsletters is
available at www.dacs.dtic.mil/
awareness/newsletters/.”

In addition to this print message, we
ask that you send us three copies of
any document that references any
article appearing in the DoD
Software Tech News.

DWC

Dot e Avrabysis Certer fior Software Rome,

Data & Analysis Center for Software
P.O. Box 1400
NY 13442-1400

http:iac.dbocmilidacs

Return Service Requested

PRSRT STD
U.S. Postage
PA ID
Permit #566
UTICA, NY

mailto:news-editor@dacs.dtic.mil
http://iac.dtic.mil/dacs/
dnicholls@dacs.dtic.mil
http://www.dacs.dtic.mil/awareness/newsletters/

